SHORTER COMMUNICATION

FURTHER NOTE ON AN APPROXIMATE METHOD FOR CALCULATING HEAT TRANSFER IN LAMINAR BOUNDARY-LAYERS WITH CONSTANT WALL TEMPERATURE

A. G. SMITH* and V. L. SHAH †

NOMENCLATURE

- c, characteristic length of body, e.g. chord or major axis, ft;
- c_p , specific heat at constant pressure, CHU lb⁻¹ degC⁻¹;
- Δ_4 , conduction thickness of the thermal boundary layer defined by $h = k/\Delta_4$, ft;
- h, coefficient of heat transfer, CHU $ft^{-2} degC^{-1}$ sec⁻¹;
- k, thermal conductivity of the fluid, CHU ft^{-1} degC⁻¹;
- Nu, Nusselt number hc/k;
- ν , kinematic viscosity of the fluid, ft² s⁻¹;
- *Pr*, Prandtl number, $\rho c_{\nu} \nu / k$;
- *Re_c*, Reynolds number, Uc/ν ;
- ρ , fluid density, lb ft⁻³;
- U_1 , mainstream velocity at a point on the surface, ft s⁻¹;
- U, approach or reference velocity, ft s⁻¹;
- x, distance along surface from stagnation point, ft.

IN A PREVIOUS paper [1] the method of Smith and Spalding [2], for the calculation of heat transfer in laminar boundary-layers with constant wall temperature, was extended to the range of Prandtl numbers 0.7–10.

The present note extends the previous paper in two respects:

(a) It compares the results of calculations by the method of [1], with other theoretical results, and with some experimental measurements at Pr = 2.5.

(b) As a result of the data of Evans [3] it refines the values of the constants in the quadratures of [1] and extends the range of Prandtl numbers to 0.5 < Pr < 20,000.

The theoretical results with which the comparison is made are those of Merk [4] whose method is based on the exact "wedge" solutions of Eckert [5]. Figs. 1 and 2 show $Nu/\sqrt{Re_e}$ calculated by the two methods for flow over ellipses of 2:1 and 4:1 major/minor axis ratio.

* University of Nottingham, Nottingham, United Kingdom.

The experimental results with which comparison is made are those of Sogin *et al.* [6], who measured mass transfer from cylinders in cross flow. Comparisons are shown in Figs. 3-5. Agreement is satisfactory.

It is confirmed, therefore, that our method described in [1] predicts heat transfer fairly accurately except near separation, where it predicts rather high values.

Evans [3] has greatly extended and refined the "wedgeflow" exact solutions of the thermal boundary-layer equations. From his data, the values of A and B, which are the constants in the quadrature given in paper [1],

FIG. 1. Heat-transfer coefficient on the surface of a 2:1 ellipse for various Prandtl numbers.

[†] The College of Aeronautics, United Kingdom.

FIG. 2. Heat-transfer coefficient on the surface of a 4:1 ellipse for various Prandtl numbers.

Fig. 3. Local rates of heat transfer from cylinders in cross flow, Pr = 2.5.

FIG. 4. Local rates of heat transfer from cylinders in cross flow, Pr = 2.5.

FIG. 5. Local rates of heat transfer from cylinders in cross flow, Pr = 2.5.

FIG. 6. Graphs of dependence of numbers A and B on Pr.

have been calculated, and are presented in Table 1 and Fig. 6. The constants A and B are used in the quadrature

$$\begin{split} & \left(\frac{\mathcal{L}_{4}}{c}\right)^{2} \left(\frac{\nu}{Uc}\right) = \frac{\mathcal{A}}{(U_{1}/U)^{B}} \int_{0}^{x/c} \left(\frac{U_{1}}{U}\right)^{B-1} \mathrm{d}\left(\frac{x}{c}\right) \\ & + \frac{1}{(U_{1}/U)^{B}} \int_{0}^{x/c} \left(\frac{U_{1}}{U}\right)^{B-1} \mathcal{E}_{4} \mathrm{d}\left(\frac{x}{c}\right) \end{split}$$

 E_4 , which is a function of

$$\frac{\Delta_4^2}{\nu} \frac{\mathrm{d}U_1}{\mathrm{d}x}$$

is given in [1] for $0.7 \le Pr \le 10$. For Pr values greater than 10, it will often be satisfactory, when it is desired to

Pr	$APr^{2/3}$	В	$(A/B)Pr^{2/3}$
0.5	9.369	2.791	3.357
0.7	9.204	2.869	3.207
0.8	9.146	2.900	3.154
1.0	9.069	2.952	3.072
1.4	8.975	3.026	2.966
2	8.902	3.102	2.870
3	8.840	3.181	2.779
5	8.791	3.273	2.686
10	8.754	3.380	2.590
50	8.724	3.558	2.452
100	8.712	3.606	2.416
500	8.717	3.692	2.361
1000	8·716	3.716	2.346
5000	8.716	3.753	2.322
10 000	8 ·716	3.764	2.316
20 000	8.716	3.773	2.310

Table 1

include the error term in the calculation, to assume similarity of the E_4 values with those for Pr = 10. By this is meant

$$\frac{E_4}{A} = f\left[\left(\frac{\Delta_4^2 \,\mathrm{d} U_1}{\nu \,\mathrm{d} x}\right)/D\right],\,$$

where D is the interval of $(\Delta_4^2/\nu)(dU_1/dx)$ between the values at which $E_4 = 0$.

REFERENCES

- 1. A. G. SMITH and V. L. SHAH, Approximate calculation method for heat transfer in laminar boundary layers with constant surface temperature, *Int. J. Heat Mass Transfer*, 3, 126–132 (1961).
- 2. A. G. SMITH and D. B. SPALDING, Heat transfer in a laminar boundary layer with constant fluid properties and constant wall temperature, J. Roy. Aero. Soc. 62, 60-64 (1958).
- 3. H. L. EVANS, Mass transfer through laminar boundary layers—3a. Similar solutions of the *b*-equation when B = 0 and $\sigma \ge 0.5$, Int. J. Heat Mass Transfer 3, 26-41 (1961).
- H. J. MERK, Rapid calculations for boundary-layer transfer using wedge solutions and asymptotic expansions, J. Fluid Mech. 5, 460-480 (1959).
- E. R. G. ECKERT, Die Berechnung des Wärmeübergangs in der laminaren Grenzschicht umströmter Körper, Forschungsh. Ver. dtsch. Ing. 416, 1-24 (1942).
- 6. H. H. SOGIN, V. S. SUBRAMANIAN and R. J. SOGIN, Heat transfer from surfaces of non-uniform temperature distribution. Final report—1. Local rates of mass transfer from cylinders in cross flow, *AFOSR TR*-60-78, (1960).