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AN APPROXIMATE METHOD FOR CALCULATING HEAT 
LAMINAR BOUNDARY-LAYERS WITH CONSTANT 

WALL TEMPERATURE 

A. G. SMITH * and V. L. SHAH t 

NOMENCLATURE 

characteristic length of body, e.g. chord or 
major axis, ft; 
specific heat at constant pressure, CHU lb-l 
degC-‘; 
conduction thickness of the thermal boundary 
layer defined by h = k/A,, ft; 
coefficient of heat transfer, CHU ftt2 degC-l 
se&; 
thermal conductivity of ‘the fluid, CHU ft-’ 
degC-i; 
Nusselt number he/k ; 
kinematic viscosity of the fluid, ft2 s-l; 
Prandtl number, pc,v/k; 
Reynolds number, UC/Y ; 
fluid density, lb ft-3; 
mainstream velocity at a point on the surface, 
ft s-1; 
approach or reference velocity, ft s-r; 
distance along surface from stagnation point, ft. 

IN A PREVIOUS paper [l] the method of Smith and Spalding 
[2], for the calculation of heat transfer in laminar 
boundary-layers with constant wall temperature, was 
extended to the range of Prandtl numbers 0.7-10. 

The present note extends the previous paper in two 
respects : 

(a) It compares the results of calculations by the method 
of [l], with other theoretical results, and with some 
experimental measurements at Pr = 2.5. 

tb) As a result of the data of Evans [3] it refines the 
values of the constants in the quadratures of [l] and 
extends the range of Prandtl numbers to 05 < Pr < 
20,000. 

The theoretical results with which the comparison is 
made are those of Merk [4] whose method is based on the 
exact “wedge” solutions of Eckert 151. Fias. 1 and 2 -- _ 
show Nu/z/Re, calculated by the two methods for flow 
over ellipses of 2 : 1 and 4 : 1 major/minor axis ratio. 

____ 
* University of Nottingham, Nottingham, United 

Kingdom. 
t The College of Aeronautics: United Kingdom. 

The experimental results with which comparison is made 
are those of Sogin et al. [6], who measured mass transfer 
from cylinders in cross flow. Comparisons are shown in 
Figs. 3-5. Agreement is satisfactory. 

It is confirmed, therefore, that our method described 
in [l] predicts heat transfer fairly accurately except near 
separation, where it predicts rather high values. 

Evans [3] has greatly extended and refined the “wedge- 
flow” exact solutions of the thermal boundary-layer 
equations. From his data, the values of A and B, which 
are the constants in the quadrature given in paper [l], 
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1. Heat-transfer coefficient on the surface of a 
2 : 1 ellipse for various Prandtl numbers. 
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FIG. 2. Heat-transfer coefficient on the surface of a 
4 : 1 ellipse for various Prandtl numbers. 

- Present anol: 

--- Merk 

--- Schuh 

8, degrees 

FIG. 3. Local rates of heat transfer from cylinders in cross flow, Pr = 25 
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FIG. 4. Local rates of heat transfer from cylinders in 
cross flow, Pr = 2.5. 
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FIG. 5. Local rates of heat transfer from cylinders in cross flow, Pr = 2.5. 
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FIG;. 6. Graphs of dependence of numbers A and B on Pr. 

have been calculated, and are presented in Table 1 and include the error term in the calculation, to assume 
Fig. 6. The constants A and B are used in the quadrature similarity of the E4 values with those for Pr = 10. By this 
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where D is the interval of (Ai/r)(dU,/dx) between the 

E4, which is a function of values at which E4 = 0. 

d4” dU, 
Y dx’ REFERENCES 

is given in [l] for 0.7 < Pr < 10. For Pr values greater 
than 10, it will often be satisfactory, when it is desired to 
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Table 1 
-- 2 

Pr 

0.5 
0.7 
0.8 
1.0 
1.4 
2 
3 
5 

10 
50 

100 
500 

1000 
5000 

10 000 
20000 
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