SHORTER COMMUNICATION

FURTHER NOTE ON AN APPROXIMATE METHOD FOR CALCULATING HEAT TRANSFER IN LAMINAR BOUNDARY-LAYERS WITH CONSTANT WALL TEMPERATURE

A. G. SMITH^{*} and V. L. SHAH⁺

NOMENCLATURE

- c, characteristic length of body, e.g. chord or major axis, ft;
- c_{p} specific heat at constant pressure, CHU lb^{-1} $degC^{-1}$;
- \mathcal{A}_4 , conduction thickness of the thermal boundary layer defined by $h = k/\Delta_4$, ft;
- h, coefficient of heat transfer, CHU ft⁻² degC⁻¹ sec^{-1} :
- k, thermal conductivity of the fluid, CHU ft^{-1} $degC^{-1}$;
- $Nu.$ Nusselt number *he/k* ;
- kinematic viscosity of the fluid, ft^2 s⁻¹; $\boldsymbol{\nu}$.
- Pr. Prandtl number, *pc,v/k;*
- Re_c Reynolds number, *UC/Y ;*
- fluid density, lb ft^{-3} ; ρ,
- U_1 mainstream velocity at a point on the surface, ft s^{-1} ;
- V, approach or reference velocity, ft s^{-1} ;
- \mathbf{x} . distance along surface from stagnation point, ft.

IN A PREVIOUS paper [l] the method of Smith and Spalding [2], for the calculation of heat transfer in laminar boundary-layers with constant wall temperature, was extended to the range of Prandtl numbers 0.7-10.

The present note extends the previous paper in two respects :

(a) It compares the results of calculations by the method of [l], with other theoretical results, and with some experimental measurements at *Pr =* 2.5.

 (b) As a result of the data of Evans $[3]$ it refines the values of the constants in the quadratures of [l] and extends the range of Prandtl numbers to $0.5 < P_r <$ 20,000.

The theoretical results with which the comparison is made are those of Merk [4] whose method is based on the exact "wedge" solutions of Eckert [5]. Figs. 1 and 2 show $Nu/\sqrt{Re_e}$ calculated by the two methods for flow over ellipses of 2 : 1 and 4 : 1 major/minor axis ratio.

* University of Nottingham, Nottingham, United Kingdom.

 $\overline{}$

The experimental results with which comparison is made are those of Sogin et al. [6], who measured mass transfer from cylinders in cross flow. Comparisons are shown in Figs. 3-5. Agreement is satisfactory.

It is confirmed, therefore, that our method described in [l] predicts heat transfer fairly accurately except near separation, where it predicts rather high values.

Evans [3] has greatly extended and refined the "wedgeflow" exact solutions of the thermal boundary-layer equations. From his data, the values of A and *B,* which are the constants in the quadrature given in paper [l],

FIG. 1. Heat-transfer coefficient on the surface of a 2 : 1 ellipse for various Prandtl numbers.

t The College of Aeronautics, United Kingdom.

FIG. 2. Heat-transfer coefficient on the surface of a 4 : 1 ellipse for various Prandtl numbers.

FIG. 3. Local rates of heat transfer from cylinders in cross flow, *Pr = 25*

FIG. 4. Local rates of heat transfer from cylinders in cross flow, $Pr = 2.5$.

FIG. 5. Local rates of heat transfer from cylinders in cross flow, *Pr =* 2.5.

FIG. 6. Graphs of dependence of numbers A and B on Pr .

have been calculated, and are presented in Table 1 and Fig. 6. The constants A and B are used in the quadrature

$$
\left(\frac{d_4}{c}\right)^2\left(\frac{v}{Uc}\right) = \frac{A}{(U_1/U)^B} \int_0^{x/c} \left(\frac{U_1}{U}\right)^{B-1} d\left(\frac{x}{c}\right) + \frac{1}{(U_1/U)^B} \int_0^{x/c} \left(\frac{U_1}{U}\right)^{B-1} E_4 d\left(\frac{x}{c}\right)
$$

 E_4 , which is a function of

$$
\frac{\Delta_4^2}{\nu} \frac{\mathrm{d} U_1}{\mathrm{d} x}
$$

is given in 111 for 0.7 \leq Pr \leq 10. For Pr values greater than 10, it will often be satisfactory, when it is desired to

Pr	APr ^{2/3}	B	$(A/B)Pr^{2/3}$
0.5	9.369	2.791	3.357
0.7	9.204	2.869	3.207
0.8	9.146	2.900	3.154
1·0	9.069	2.952	3.072
1·4	8.975	3.026	2.966
2	8.902	3.102	2.870
3	8.840	3.181	2.779
5	8.791	3.273	2.686
10	8.754	3.380	2.590
50	8.724	3.558	2.452
100	8.712	3.606	2.416
500	8.717	3.692	2.361
1000	8.716	$3 - 716$	2.346
5000	8.716	3.753	2.322
10 000	8.716	3.764	2.316
20 000	8.716	3.773	2.310

Table 1

include the error term in the calculation, to assume similarity of the E_4 values with those for $Pr = 10$. By this is meant

$$
\frac{E_4}{A}=f\bigg[\bigg(\frac{A_4^2}{\nu}\frac{\mathrm{d}U_1}{\mathrm{d}x}\bigg)/D\bigg],
$$

where D is the interval of $\left(\frac{d_4^2}{v}\right)(dU_1/dx)$ between the values at which $E_4 = 0$.

REFERENCES

- 1. A. G. SMITH and V. L. SHAH, Approximate calculation method for heat transfer in laminar boundary layers with constant surface temperature, Int. J. Heat Mass Transfer, 3, 126-132 (1961).
- 2. A. G. SMITH and D. B. SPALDING, Heat transfer in a laminar boundary layer with constant fluid properties and constant wall temperature, J. Roy. Aero. Soc. 62, 60-64 (1958).
- 3. H. L. Evans, Mass transfer through laminar boundary layers—3a. Similar solutions of the b -equation when $B = 0$ and $\sigma \ge 0.5$, Int. J. Heat Mass Transfer 3, 26-41 (1961).
- 4. H. J. MERK, Rapid calculations for boundary-layer transfer using wedge solutions and asymptotic expansions, J. Fluid Mech. 5, 460-480 (1959).
- 5. E. R. G. ECKERT, Die Berechnung des Wärmeübergangs in der laminaren Grenzschicht umströmter Körper, Forschungsh. Ver. dtsch. Ing. 416, 1-24 $(1942).$
- 6. H. H. SOGIN, V. S. SUBRAMANIAN and R. J. SOGIN, Heat transfer from surfaces of non-uniform temperature distribution. Final report—1. Local rates of mass transfer from cylinders in cross flow, AFOSR TR-60-78, $(1960).$